{\delta}-MAPS: From spatio-temporal data to a weighted and lagged network between functional domains
نویسندگان
چکیده
We propose δ-MAPS, a method that analyzes spatio-temporal data to first identify the distinct spatial components of the underlying system, referred to as “domains”, and second to infer the connections between them. A domain is a spatially contiguous region of highly correlated temporal activity. The core of a domain is a point or subregion at which a metric of local homogeneity is maximum across the entire domain. We compute a domain as the maximum-sized set of spatially contiguous cells that include the detected core and satisfy a homogeneity constraint, expressed in terms of the average pairwise cross-correlation across all cells in the domain. Domains may be spatially overlapping. Different domains may have correlated activity, potentially at a lag, because of direct or indirect interactions. The proposed edge inference method examines the statistical significance of each lagged cross-correlation between two domains, infers a range of lag values for each edge, and assigns a weight to each edge based on the covariance of the two domains. We illustrate the application of δ-MAPS on data from two domains: climate science and neuroscience.
منابع مشابه
δ-MAPS: From spatio-temporal data to a weighted and lagged network between functional domains
We propose δ-MAPS, a method that analyzes spatio-temporal data to first identify the distinct spatial components of the underlying system, referred to as “domains”, and second to infer the connections between them. A domain is a spatially contiguous region of highly correlated temporal activity. The core of a domain is a point or subregion at which a metric of local homogeneity is maximum acros...
متن کاملContext-aware Modeling for Spatio-temporal Data Transmitted from a Wireless Body Sensor Network
Context-aware systems must be interoperable and work across different platforms at any time and in any place. Context data collected from wireless body area networks (WBAN) may be heterogeneous and imperfect, which makes their design and implementation difficult. In this research, we introduce a model which takes the dynamic nature of a context-aware system into consideration. This model is con...
متن کاملModeling and Spatio-Temporal Analysis of the Distribution of O3 in Tehran City Based on Neural Network and Spatial Analysis in GIS Environment
Air pollution is one of the most problems that people are facing today in metropolitan areas. Suspended particulates, carbon monoxide, sulfur dioxide, ozone and nitrogen dioxide are the five major pollutants of air that pose many problems to human health. The goal of this study is to propose a spatial approach for estimation and analyzing the spatial and temporal distribution of ozone based on ...
متن کاملSTCS-GAF: Spatio-Temporal Compressive Sensing in Wireless Sensor Networks- A GAF-Based Approach
Routing and data aggregation are two important techniques for reducing communication cost of wireless sensor networks (WSNs). To minimize communication cost, routing methods can be merged with data aggregation techniques. Compressive sensing (CS) is one of the effective techniques for aggregating network data, which can reduce the cost of communication by reducing the amount of routed data to t...
متن کاملAssessment of Neonate's Congenital Hypothyroidism Pattern Using Poisson Spatio-temporal Model in Disease Mapping under the Bayesian Paradigm during 2011-18 in Guilan, Iran
Background: Congenital Hypothyroidism (CH) is one of the reasons for mental retardation and defective growth in neonates. It can be treated if it is diagnosed early. The congenital hypothyroidism can be diagnosed using newborn screening in the first days after birth. Disease mapping helps to identify high-risk areas of the disease. This study aimed to evaluate the pattern of CH using the Poisso...
متن کامل